References
Addor, N., & Melsen, L. (2019). Legacy, rather than adequacy, drives the selection of hydrological models. Water Resources Research, 55(1), 378–390.
Ahadi, A., Singh, A., Bower, M., & Garrett, M. (2022). Text mining in education—a bibliometrics-based systematic review. Education Sciences, 12(3). https://doi.org/10.3390/educsci12030210
Al-Hashedi, K. G., & Magalingam, P. (2021). Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019. Computer Science Review, 40, 100402. https://doi.org/https://doi.org/10.1016/j.cosrev.2021.100402
Ali, A., Abd Razak, S., Othman, S. H., Eisa, T. A. E., Al-Dhaqm, A., Nasser, M., … Saif, A. (2022). Financial fraud detection based on machine learning: A systematic literature review. Applied Sciences, 12(19). https://doi.org/10.3390/app12199637
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An r-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. Retrieved from https://doi.org/10.1016/j.joi.2017.08.007
Ashtiani, M. N., & Raahemi, B. (2021). Intelligent fraud detection in financial statements using machine learning and data mining: A systematic literature review. IEEE Access, 10, 72504–72525.
Baltagi, B. (2005). Econometric analysis of panel data (3rd ed.). John Wiley & Sons.
Bin Sulaiman, R., Schetinin, V., & Sant, P. (2022). Review of machine learning approach on credit card fraud detection. Human-Centric Intelligent Systems, 1–14.
Boehmke, B., & Greenwell, B. M. (2019). Hands-on machine learning with r. CRC Press. Retrieved from https://bradleyboehmke.github.io/HOML/
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327.
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press.
Breusch, T. S., & Pagan, A. R. (1980). The lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 239–253.
Collomb, A., Costea, C., Joyeux, D., Hasan, O., & Brunie, L. (2014). A study and comparison of sentiment analysis methods for reputation evaluation.
Crisan, A., Munzner, T., & Gardy, J. L. (2018). Adjutant: An r-based tool to support topic discovery for systematic and literature reviews. Bioinformatics, 35(6), 1070–1072.
Croissant, Y., & Millo, G. (2008). Panel data econometrics in r: The plm package. Journal of Statistical Software, 27(2), 1–43.
Edwards, R. D., & Magee, J. (1966). Technical analysis. Stock Trenh.
Engle, R. (2001). GARCH 101: The use of ARCH/GARCH models in applied econometrics. Journal of Economic Perspectives, 157–168.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica: Journal of the Econometric Society, 987–1007.
Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. The Journal of Finance, 47(2), 427–465.
Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3–56.
Feldman, R., & Sanger, J. (2007). The text mining handbook: Advanced approaches in analyzing unstructured data. Cambridge University Press.
Francis, J. C., & Kim, D. (2013). Modern portfolio theory: Foundations, analysis, and new developments (Vol. 795). John Wiley & Sons.
Grames, E. M., Stillman, A. N., Tingley, M. W., & Elphick, C. S. (2019). An automated approach to identifying search terms for systematic reviews using keyword co-occurrence networks. Methods in Ecology and Evolution, 0(ja). https://doi.org/10.1111/2041-210X.13268
Grames, E., Stillman, A., Tingley, M., & Elphick, C. (2019). Litsearchr: Automated search term selection and search strategy for systematic reviews.
Greene, W. H. (2008). Econometric analysis. Granite Hill Publishers.
Grunfeld, Y. (1958). The determinants of corporate investment: A study of a number of large corporations in the united states (PhD thesis). Department of Photoduplication, University of Chicago Library.
Hastie, T., Tibshirani, R., James, G., & Witten, D. (2013). An introduction to statistical learning with applications in r. Springer New York.
Hausman, J. (1978). Specification tests in econometrics. Econometrica.
Hyndman, R. J., & Athanasopoulos, G. (2019). Forecasting: Principles and practice. OTexts. Retrieved from https://otexts.com/fpp3/
Kleiber, C., & Zeileis, A. (2008). Applied econometrics with r. Springer Science & Business Media.
Lajeunesse, M. J. (2016). Facilitating systematic reviews, data extraction and meta-analysis with the metagear package for r. Methods in Ecology and Evolution, 7(3), 323–330.
Lantz, B. (2019). Machine learning with r (3rd edition). Packt Publishing. Retrieved from https://app.knovel.com/hotlink/toc/id:kpMLRE000A/machine-learning-with/machine-learning-with
Le Borgne, Y.-A., Siblini, W., Lebichot, B., & Bontempi, G. (2022). Reproducible machine learning for credit card fraud detection - practical handbook. Université Libre de Bruxelles. Retrieved from https://fraud-detection-handbook.github.io/fraud-detection-handbook/Foreword.html
Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175–194. https://doi.org/10.1177/0312896219877678
Manganelli, S., & Engle, R. F. (2001). Value at risk models in finance.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.
Markowitz, H. M. (1991). Foundations of portfolio theory. The Journal of Finance, 46(2), 469–477.
Mohammad, S. M., & Turney, P. D. (2010). Emotions evoked by common words and phrases: Using mechanical turk to create an emotion lexicon. Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, 26–34. Association for Computational Linguistics.
Ruppert, D. (2015). Statistics and data analysis for financial engineering (2nd ed., Vol. 13). Springer.
Sadgali, I., Sael, N., & Benabbou, F. (2019). Performance of machine learning techniques in the detection of financial frauds. Procedia Computer Science, 148, 45–54.
Shynkevich, Y., McGinnity, T. M., Coleman, S. A., Belatreche, A., & Li, Y. (2017). Forecasting price movements using technical indicators: Investigating the impact of varying input window length. Neurocomputing, 264, 71–88. https://doi.org/https://doi.org/10.1016/j.neucom.2016.11.095
Stock, J. H., & Watson, M. W. (2012). Introduction to econometrics: Global edition. Pearson Education.
Swamy, P., & Arora, S. S. (1972). The exact finite sample properties of the estimators of coefficients in the error components regression models. Econometrica: Journal of the Econometric Society, 261–275.
Szylar, C. (2013). Handbook of market risk. John Wiley & Sons.
Westgate, M. J. (2018). Revtools: Bibliographic data visualization for evidence synthesis in r. bioArXiv. https://doi.org/10.1101/262881
Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Springer.
Wickham, H. (2010). A layered grammar of graphics. Journal of Computational and Graphical Statistics, 19(1), 3–28.
Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press.
Yan, X., Guo, J., Lan, Y., & Cheng, X. (2013). A biterm topic model for short texts. Proceedings of the 22nd International Conference on World Wide Web, 1445–1456.