Topic 4 Data Exploration
The good news is that these descriptive statistics give us a manageable and meaningful summary of the underlying phenomenon. That’s what this chapter is about. The bad news is that any simplification invites abuse. Descriptive statistics can be like online dating profiles: technically accurate and yet pretty darn misleading. -Charles Wheelan
4.1 Data Preprocessing
-We will now discuss some methods for data manipulation to clean a dataset, combine various datasets or extract a variable from a data frame before we jump into some programming basics.
4.1.1 Extracting Data
-Data frames are the most used data structures in R as they offer more flexibility in the way they can handle data.
Lets see some methods to extract data from a data frame. We will use the example dataset called \(\mathtt{us\_stocks.csv}\).
Lets import it using \(\mathtt{read.csv}\)
= read.csv(file = "data/us_stocks.csv", header = TRUE)
data_stocks head(data_stocks)
Date MSFT IBM AAPL MCD PG GOOG
1 2/01/2002 33.52 121.50 11.65 26.49 40.00 NA
2 3/01/2002 34.62 123.66 11.79 26.79 39.62 NA
3 4/01/2002 34.45 125.60 11.84 26.99 39.22 NA
4 7/01/2002 34.28 124.05 11.45 27.20 38.78 NA
5 8/01/2002 34.69 124.70 11.30 27.36 38.88 NA
6 9/01/2002 34.36 124.49 10.82 26.88 38.60 NA
The function \(\mathtt{names}\) or \(\mathtt{colnames}\) are used to access the names of the columns (or variables) in the data set as shows below.
The function \(\mathtt{row.names}\) can be used to access row names (if any) from a dataset
names(data_stocks)
[1] "Date" "MSFT" "IBM" "AAPL" "MCD" "PG" "GOOG"
colnames(data_stocks)
[1] "Date" "MSFT" "IBM" "AAPL" "MCD" "PG" "GOOG"
A specific data variable can be accessed using its name or index (column number) in the data frame.
To select any column use \(\mathtt{\$}\) symbol followed by the column name or its name in square brackets as shown in the example below
= data_stocks$MSFT #the data is returned as a vector
msft_prices1 head(msft_prices1)
[1] 33.52 34.62 34.45 34.28 34.69 34.36
= data_stocks[["MSFT"]] #the data is returned as a vector
msft_prices2 head(msft_prices2)
[1] 33.52 34.62 34.45 34.28 34.69 34.36
# the following returns data as a data frame
= data_stocks["MSFT"] #can also be used to access multiple columns
msft_prices3 head(msft_prices3)
MSFT
1 33.52
2 34.62
3 34.45
4 34.28
5 34.69
6 34.36
These data columns can also be accessed like a matrix, using a matrix index.
This method can return a complete row, a complete column or just an element from the dataset.
# MSFT is in the second column and leaving the row index blank returns all the
# rows for the particular column
= data_stocks[, 2]
msft_prices4
head(msft_prices4)
[1] 33.52 34.62 34.45 34.28 34.69 34.36
# all the elements in row 4
4, ] data_stocks[
Date MSFT IBM AAPL MCD PG GOOG
4 7/01/2002 34.28 124.05 11.45 27.2 38.78 NA
4.1.2 Combining Data Frames
It may be required to combine two data frames during a data processing.
This can be done by stacking them row by row or combining them by columns using \(\mathtt{rbind}\) and \(\mathtt{cbind}\) respectively.
When using \(\mathtt{cbind}\) the number of rows in the columns combined must be of equal length likewise in \(\mathtt{rbind}\) the number of columns of the datasets combined should be equal. Lets see an example
# First create a vector having the returns for msft
= 100 * diff(log(data_stocks$MSFT))
msft_ret # combine the vector with the data
= cbind(data_stocks, MSFT_RET = msft_ret) #this will generate an error message data_stocks_r
Error in data.frame(..., check.names = FALSE): arguments imply differing number of rows: 2784, 2783
# different length
length(msft_ret)
[1] 2783
length(data_stocks$MSFT)
[1] 2784
# add one more value to vector msft_ret
= c(0, msft_ret)
msft_ret # check the length
length(msft_ret)
[1] 2784
# lets combine now (it should work)
= cbind(data_stocks, MSFT_RET = msft_ret)
data_stocks_r head(data_stocks_r) #shows one more column added to the data
Date MSFT IBM AAPL MCD PG GOOG MSFT_RET
1 2/01/2002 33.52 121.50 11.65 26.49 40.00 NA 0.0000000
2 3/01/2002 34.62 123.66 11.79 26.79 39.62 NA 3.2289274
3 4/01/2002 34.45 125.60 11.84 26.99 39.22 NA -0.4922552
4 7/01/2002 34.28 124.05 11.45 27.20 38.78 NA -0.4946904
5 8/01/2002 34.69 124.70 11.30 27.36 38.88 NA 1.1889367
6 9/01/2002 34.36 124.49 10.82 26.88 38.60 NA -0.9558364
- The following example adds a row to the data frame.
# create two dataframes from data_stocks
= data_stocks[1:10, ] #first 10 rows
data_r1 = data_stocks[2775:2784, ] #last 10 rows
data_r2 = rbind(data_r1, data_r2)
data_stocks_rbind print(data_stocks_rbind)
Date MSFT IBM AAPL MCD PG GOOG
1 2/01/2002 33.52 121.50 11.65 26.49 40.00 NA
2 3/01/2002 34.62 123.66 11.79 26.79 39.62 NA
3 4/01/2002 34.45 125.60 11.84 26.99 39.22 NA
4 7/01/2002 34.28 124.05 11.45 27.20 38.78 NA
5 8/01/2002 34.69 124.70 11.30 27.36 38.88 NA
6 9/01/2002 34.36 124.49 10.82 26.88 38.60 NA
7 10/01/2002 34.64 122.14 10.62 26.81 38.46 NA
8 11/01/2002 34.30 120.31 10.52 26.34 38.60 NA
9 14/01/2002 34.24 118.05 10.58 26.02 39.35 NA
10 15/01/2002 34.78 118.85 10.85 26.20 39.82 NA
2775 17/12/2012 27.10 193.62 518.83 89.91 69.93 720.78
2776 18/12/2012 27.56 195.69 533.90 90.52 69.97 721.07
2777 19/12/2012 27.31 195.08 526.31 89.71 69.34 720.11
2778 20/12/2012 27.68 194.77 521.73 90.04 69.82 722.36
2779 21/12/2012 27.45 193.42 519.33 90.18 68.72 715.63
2780 24/12/2012 27.06 192.40 520.17 89.29 68.52 709.50
2781 26/12/2012 26.86 191.95 513.00 88.74 68.00 708.87
2782 27/12/2012 26.96 192.71 515.06 88.72 67.97 706.29
2783 28/12/2012 26.55 189.83 509.59 87.58 67.15 700.01
2784 31/12/2012 26.71 191.55 532.17 88.21 67.89 707.38
4.1.3 Sub setting and Logical Data Selection
Suppose we want to extract data with particular characteristics like values ranges etc.
This can be accomplished using logical statements in bracket notations.
The following example illustrates. See \(\mathtt{help(">")}\) to see more comparison operators.
# select all rows with Apple prices above 100
= data_stocks[data_stocks$AAPL > 100, ]
data_aaplgr100 head(data_aaplgr100)
Date MSFT IBM AAPL MCD PG GOOG
1342 2/05/2007 30.61 102.22 100.39 50.02 62.37 465.78
1343 3/05/2007 30.97 102.80 100.40 49.91 62.00 473.23
1344 4/05/2007 30.56 102.96 100.81 49.92 62.41 471.12
1345 7/05/2007 30.71 103.16 103.92 49.50 62.18 467.27
1346 8/05/2007 30.75 103.29 105.06 49.32 61.75 466.81
1347 9/05/2007 30.78 104.38 106.88 49.84 62.01 469.25
min(data_aaplgr100$AAPL) #check if the prices are above 100
[1] NA
# this give NA as the minimum which indicates that data frame has NA lets
# remove NAs from data_aaplgr100 using na.omit function
= na.omit(data_aaplgr100)
data_aaplgr100 # now check the minimum again
min(data_aaplgr100$AAPL)
[1] 100.06
- The \(\mathtt{na.omit}\) function used in the example above can be used to remove all the empty values in the dataset.
head(data_stocks) #notice NAs in GOOG
Date MSFT IBM AAPL MCD PG GOOG
1 2/01/2002 33.52 121.50 11.65 26.49 40.00 NA
2 3/01/2002 34.62 123.66 11.79 26.79 39.62 NA
3 4/01/2002 34.45 125.60 11.84 26.99 39.22 NA
4 7/01/2002 34.28 124.05 11.45 27.20 38.78 NA
5 8/01/2002 34.69 124.70 11.30 27.36 38.88 NA
6 9/01/2002 34.36 124.49 10.82 26.88 38.60 NA
= data_stocks[!is.na(data_stocks$GOOG), ]
data_stocks_googlena head(data_stocks_googlena) #after removing NAs
Date MSFT IBM AAPL MCD PG GOOG
663 19/08/2004 27.12 84.89 15.36 26.60 54.48 100.34
664 20/08/2004 27.20 85.25 15.40 27.07 54.85 108.31
665 23/08/2004 27.24 84.65 15.54 26.64 54.75 109.40
666 24/08/2004 27.24 84.71 15.98 26.87 54.95 104.87
667 25/08/2004 27.55 85.07 16.52 26.95 55.30 106.00
668 26/08/2004 27.44 84.69 17.33 27.10 55.70 107.91
# the above can still leave NAs in other columns use na.omit to remove all the
# blank data
= na.omit(data_stocks) data_stocks_naomit
There can be a requirement in data pre processing where one might have to select data in a range.
The following example selects data where MSFT prices lie between 20 and 30.
\(\mathtt{\&}\) is a Logic operator in R see help(“&”) to see more details and other Logic operators.
= data_stocks_naomit[data_stocks_naomit$MSFT <= 30 & data_stocks_naomit$MSFT >
data_msft 20, ]
min(data_msft$MSFT) #check
[1] 20.06
These selections can also be performed using the function \(\mathtt{subset}\).
The following example uses \(\mathtt{subset}\) function to select rows with AAPL>100. The arguments to the function are also shows in the example
args(subset.data.frame)
function (x, subset, select, drop = FALSE, ...)
NULL
= subset(data_stocks_naomit, AAPL > 100)
aaplgr100 head(aaplgr100)
Date MSFT IBM AAPL MCD PG GOOG
1342 2/05/2007 30.61 102.22 100.39 50.02 62.37 465.78
1343 3/05/2007 30.97 102.80 100.40 49.91 62.00 473.23
1344 4/05/2007 30.56 102.96 100.81 49.92 62.41 471.12
1345 7/05/2007 30.71 103.16 103.92 49.50 62.18 467.27
1346 8/05/2007 30.75 103.29 105.06 49.32 61.75 466.81
1347 9/05/2007 30.78 104.38 106.88 49.84 62.01 469.25
min(aaplgr100$AAPL)
[1] 100.06
4.2 Data Transformation from Wide to Long (or vice versa)
- Sometimes its required to transform wide format data to long, which is often required to work with ggplot2 package (discussed in the graphics section)
- R package tidyr provides two functions
pivot_longer()
andpivot_wider()
to transform the data into long or wide format. - Let’s convert the stocks data to the long format
library(tidyr)
= pivot_longer(data = data_stocks, cols = -Date, names_to = "Stock",
FinData_long values_to = "Price")
head(FinData_long)
# A tibble: 6 × 3
Date Stock Price
<chr> <chr> <dbl>
1 2/01/2002 MSFT 33.5
2 2/01/2002 IBM 122.
3 2/01/2002 AAPL 11.6
4 2/01/2002 MCD 26.5
5 2/01/2002 PG 40
6 2/01/2002 GOOG NA
- A reverse operation can be conducted using
pivot_wider()
= pivot_wider(FinData_long, names_from = Stock, values_from = Price)
FinData_wide head(FinData_wide)
# A tibble: 6 × 7
Date MSFT IBM AAPL MCD PG GOOG
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2/01/2002 33.5 122. 11.6 26.5 40 NA
2 3/01/2002 34.6 124. 11.8 26.8 39.6 NA
3 4/01/2002 34.4 126. 11.8 27.0 39.2 NA
4 7/01/2002 34.3 124. 11.4 27.2 38.8 NA
5 8/01/2002 34.7 125. 11.3 27.4 38.9 NA
6 9/01/2002 34.4 124. 10.8 26.9 38.6 NA
4.3 Summary Statistics
The good news is that these descriptive statistics give us a manageable and meaningful summary of the underlying phenomenon. That’s what this chapter is about. The bad news is that any simplification invites abuse. Descriptive statistics can be like online dating profiles: technically accurate and yet pretty darn misleading.-Charles Wheelan
It is simple to calculate basic summary statistics in R, most of the functions are named according to what they do.
For instance \(\mathtt{mean}\) calculates the mean of a single variable, \(\mathtt{sd}\) calculates the standard deviation.
Statistics
|
R-Function
|
Arithmetic mean
|
|
Geometric mean
|
|
median
|
|
Range
|
|
variance
|
|
standard deviation
|
|
Interquantile Range
|
|
Other quantiles
|
|
Skewness
|
|
Kurtosis
|
|
- The following example demonstrates how to calculate the statistics measures in table-1 for Dow Jones prices in data file data_fin.csv
# change the working directory to the folder containing data_fin.csv or provide
# the full path with the filename
= read.csv("data/data_fin.csv") #import data
data_stocks head(data_stocks)
Date DJI AXP MMM ATT BA CAT CISCO DD XOM GE
1 3/01/2000 11357.5 45.82 47.19 47.19 40.12 24.31 54.05 65.00 39.09 49.95
2 4/01/2000 10997.9 44.09 45.31 44.25 40.12 24.00 51.00 65.00 38.41 48.06
3 5/01/2000 11122.7 42.96 46.62 44.94 42.62 24.56 51.19 67.75 40.50 47.70
4 6/01/2000 11253.3 43.78 50.62 43.75 43.06 25.81 50.00 71.50 42.59 48.51
5 7/01/2000 11522.6 44.42 51.47 44.12 44.12 26.66 52.94 71.62 42.31 50.28
6 10/01/2000 11572.2 45.04 51.12 44.75 43.69 25.78 54.91 70.00 41.88 50.37
GS HD IBM INTC JNJ JPM MRK MCD MSFT NKE
1 88.31 65.50 115.56 43.47 46.09 48.69 64.04 39.62 58.34 12.03
2 82.38 61.50 112.06 41.47 44.41 47.27 61.61 38.81 56.31 11.38
3 78.88 61.44 116.00 41.81 44.88 46.98 64.22 39.44 56.91 12.03
4 82.25 60.00 114.62 39.38 46.28 47.65 64.75 38.88 55.00 11.97
5 82.56 62.81 113.31 41.00 47.88 48.52 70.97 39.75 55.72 11.97
6 84.38 63.19 118.44 42.88 47.03 47.69 68.89 40.06 56.12 12.17
= data_stocks$DJI
DJI = na.omit(DJI) #remove NAs as it will affect the calculations
DJI # Arithmetic mean
mean(DJI)
[1] 11098.12
# Geometric mean
exp(mean(log(DJI)))
[1] 10953.39
# median
median(DJI)
[1] 10748.8
# variance & standard deviation
var(DJI)
[1] 3280347
sd(DJI)
[1] 1811.173
# interquantile range and few quantiles
IQR(DJI)
[1] 2276.25
quantile(DJI)
0% 25% 50% 75% 100%
6547.10 10063.25 10748.80 12339.50 16576.66
# skewness and kurtosis skewness and kurtosis functions are not available in R
# core library but in library e1071 (there are other packages which have
# functions for skewness and kurtosis try ??kurtosis or search for the function
# on RSearch.
library(e1071)
skewness(DJI)
[1] 0.4777828
kurtosis(DJI)
[1] 0.08404185
- The function \(\mathtt{summary}\) in R provides some basic summary viz., minimum value, maximum value, median value and quartiles for one variable or a dataset. The function \(\mathtt{summary}\) can be used as follows
# summary of one column/variable in a dataframe
summary(DJI)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6547 10063 10749 11098 12340 16577
# summary of whole dataset excluding the time column
summary(data_stocks[, c(2:21)])
DJI AXP MMM ATT
Min. : 6547 Min. :10.26 Min. : 39.50 Min. :19.34
1st Qu.:10063 1st Qu.:38.31 1st Qu.: 62.55 1st Qu.:25.54
Median :10749 Median :47.49 Median : 77.67 Median :29.65
Mean :11098 Mean :46.77 Mean : 75.78 Mean :31.77
3rd Qu.:12340 3rd Qu.:54.44 3rd Qu.: 85.55 3rd Qu.:37.22
Max. :16577 Max. :90.73 Max. :140.25 Max. :58.50
NA's :27 NA's :12 NA's :12 NA's :12
BA CAT CISCO DD
Min. : 25.06 Min. : 14.91 Min. : 8.60 Min. :16.14
1st Qu.: 44.00 1st Qu.: 28.64 1st Qu.:17.68 1st Qu.:41.13
Median : 63.56 Median : 57.10 Median :20.43 Median :44.53
Mean : 62.95 Mean : 56.01 Mean :23.41 Mean :44.37
3rd Qu.: 74.90 3rd Qu.: 79.36 3rd Qu.:24.17 3rd Qu.:48.92
Max. :138.36 Max. :116.20 Max. :80.06 Max. :71.62
NA's :12 NA's :12 NA's :13 NA's :12
XOM GE GS HD
Min. : 30.27 Min. : 6.66 Min. : 52.0 Min. :18.00
1st Qu.: 42.46 1st Qu.:20.00 1st Qu.: 92.2 1st Qu.:31.00
Median : 64.77 Median :30.33 Median :116.2 Median :37.37
Mean : 63.20 Mean :29.56 Mean :126.9 Mean :40.20
3rd Qu.: 81.62 3rd Qu.:36.03 3rd Qu.:159.5 3rd Qu.:46.23
Max. :101.51 Max. :59.94 Max. :247.9 Max. :82.34
NA's :12 NA's :12 NA's :12 NA's :12
IBM INTC JNJ JPM
Min. : 55.07 Min. :12.08 Min. :33.69 Min. :15.45
1st Qu.: 87.82 1st Qu.:20.17 1st Qu.:55.27 1st Qu.:35.66
Median :106.48 Median :22.76 Median :61.30 Median :40.20
Mean :118.83 Mean :25.21 Mean :61.07 Mean :40.36
3rd Qu.:130.00 3rd Qu.:26.77 3rd Qu.:65.20 3rd Qu.:45.71
Max. :215.80 Max. :74.88 Max. :95.63 Max. :65.70
NA's :12 NA's :13 NA's :12 NA's :12
MRK MCD MSFT NKE
Min. :20.99 Min. : 12.38 Min. :15.15 Min. : 6.64
1st Qu.:34.53 1st Qu.: 29.19 1st Qu.:25.67 1st Qu.:14.56
Median :43.63 Median : 43.78 Median :27.59 Median :23.25
Mean :44.65 Mean : 51.07 Mean :28.38 Mean :28.01
3rd Qu.:51.55 3rd Qu.: 70.36 3rd Qu.:30.19 3rd Qu.:36.90
Max. :89.85 Max. :103.59 Max. :58.34 Max. :79.86
NA's :13 NA's :12 NA's :13 NA's :12
4.3.1 Example-Descriptive Statistics of Stock Returns
- In this example we will use R to calculate descriptive statistics for the returns of 10 stocks in the data file \(\mathtt{data\_fin.csv}\).
• We will first import the dataset into R using the \(\mathtt{read.csv}\) function.
= read.csv("data/data_fin.csv")
data_cs1 head(data_cs1) #check the imported data
Date DJI AXP MMM ATT BA CAT CISCO DD XOM GE
1 3/01/2000 11357.5 45.82 47.19 47.19 40.12 24.31 54.05 65.00 39.09 49.95
2 4/01/2000 10997.9 44.09 45.31 44.25 40.12 24.00 51.00 65.00 38.41 48.06
3 5/01/2000 11122.7 42.96 46.62 44.94 42.62 24.56 51.19 67.75 40.50 47.70
4 6/01/2000 11253.3 43.78 50.62 43.75 43.06 25.81 50.00 71.50 42.59 48.51
5 7/01/2000 11522.6 44.42 51.47 44.12 44.12 26.66 52.94 71.62 42.31 50.28
6 10/01/2000 11572.2 45.04 51.12 44.75 43.69 25.78 54.91 70.00 41.88 50.37
GS HD IBM INTC JNJ JPM MRK MCD MSFT NKE
1 88.31 65.50 115.56 43.47 46.09 48.69 64.04 39.62 58.34 12.03
2 82.38 61.50 112.06 41.47 44.41 47.27 61.61 38.81 56.31 11.38
3 78.88 61.44 116.00 41.81 44.88 46.98 64.22 39.44 56.91 12.03
4 82.25 60.00 114.62 39.38 46.28 47.65 64.75 38.88 55.00 11.97
5 82.56 62.81 113.31 41.00 47.88 48.52 70.97 39.75 55.72 11.97
6 84.38 63.19 118.44 42.88 47.03 47.69 68.89 40.06 56.12 12.17
- Apply function to with dates as character and then after converting dates to Date class.
# selecting first 10 price series including the data column
.1 = data_cs1[, c(1:11)]
data_cs1# data cleaning-remove NAs
.1 = na.omit(data_cs1.1)
data_cs1colnames(data_cs1.1) # see the columns present in the data
[1] "Date" "DJI" "AXP" "MMM" "ATT" "BA" "CAT" "CISCO" "DD"
[10] "XOM" "GE"
summary(data_cs1.1) #notice the Date variable
Date DJI AXP MMM
Length:3523 Min. : 6547 Min. :10.26 Min. : 39.50
Class :character 1st Qu.:10063 1st Qu.:38.38 1st Qu.: 62.55
Mode :character Median :10749 Median :47.60 Median : 77.67
Mean :11098 Mean :46.83 Mean : 75.80
3rd Qu.:12340 3rd Qu.:54.50 3rd Qu.: 85.61
Max. :16577 Max. :90.73 Max. :140.25
ATT BA CAT CISCO
Min. :19.34 Min. : 25.06 Min. : 14.91 Min. : 8.60
1st Qu.:25.54 1st Qu.: 44.02 1st Qu.: 28.48 1st Qu.:17.68
Median :29.76 Median : 63.61 Median : 57.11 Median :20.39
Mean :31.79 Mean : 62.99 Mean : 56.03 Mean :23.42
3rd Qu.:37.23 3rd Qu.: 74.95 3rd Qu.: 79.50 3rd Qu.:24.18
Max. :58.50 Max. :138.36 Max. :116.20 Max. :80.06
DD XOM GE
Min. :16.14 Min. : 30.27 Min. : 6.66
1st Qu.:41.17 1st Qu.: 42.41 1st Qu.:20.04
Median :44.58 Median : 64.70 Median :30.37
Mean :44.43 Mean : 63.18 Mean :29.63
3rd Qu.:48.93 3rd Qu.: 81.70 3rd Qu.:36.05
Max. :71.62 Max. :101.51 Max. :59.94
# check class of dates which will be factor ( treated as factor by default)\t
class(data_cs1.1$Date)
[1] "character"
# convert dates to class Date
.1$Date = as.Date(data_cs1.1$Date, format = "%d/%m/%Y")
data_cs1class(data_cs1.1$Date)
[1] "Date"
summary(data_cs1.1) #notice the Date variable
Date DJI AXP MMM
Min. :2000-01-03 Min. : 6547 Min. :10.26 Min. : 39.50
1st Qu.:2003-07-08 1st Qu.:10063 1st Qu.:38.38 1st Qu.: 62.55
Median :2007-01-05 Median :10749 Median :47.60 Median : 77.67
Mean :2007-01-03 Mean :11098 Mean :46.83 Mean : 75.80
3rd Qu.:2010-07-06 3rd Qu.:12340 3rd Qu.:54.50 3rd Qu.: 85.61
Max. :2014-01-03 Max. :16577 Max. :90.73 Max. :140.25
ATT BA CAT CISCO
Min. :19.34 Min. : 25.06 Min. : 14.91 Min. : 8.60
1st Qu.:25.54 1st Qu.: 44.02 1st Qu.: 28.48 1st Qu.:17.68
Median :29.76 Median : 63.61 Median : 57.11 Median :20.39
Mean :31.79 Mean : 62.99 Mean : 56.03 Mean :23.42
3rd Qu.:37.23 3rd Qu.: 74.95 3rd Qu.: 79.50 3rd Qu.:24.18
Max. :58.50 Max. :138.36 Max. :116.20 Max. :80.06
DD XOM GE
Min. :16.14 Min. : 30.27 Min. : 6.66
1st Qu.:41.17 1st Qu.: 42.41 1st Qu.:20.04
Median :44.58 Median : 64.70 Median :30.37
Mean :44.43 Mean : 63.18 Mean :29.63
3rd Qu.:48.93 3rd Qu.: 81.70 3rd Qu.:36.05
Max. :71.62 Max. :101.51 Max. :59.94
- Convert prices to returns
= as.data.frame(sapply(data_cs1.1[2:11], function(x) diff(log(x)) * 100)) #note it will be one less
d2 # create a different dataframe with returns
= as.data.frame(cbind(Date = data_cs1.1$Date[2:length(data_cs1.1$Date)],
data_stocks_ret stringsAsFactors = FALSE, row.names = NULL)
d2), # visual inspection
head(data_stocks_ret)
Date DJI AXP MMM ATT BA CAT
1 2000-01-04 -3.2173973 -3.8487678 -4.0654247 -6.4326634 0.0000000 -1.283396
2 2000-01-05 1.1283720 -2.5963549 2.8501875 1.5472895 6.0448664 2.306527
3 2000-01-06 1.1673354 1.8907642 8.2317122 -2.6836654 1.0270865 4.964291
4 2000-01-07 2.3648905 1.4512726 1.6652359 0.8421582 2.4318702 3.240230
5 2000-01-10 0.4295346 1.3861165 -0.6823304 1.4178250 -0.9793951 -3.356532
6 2000-01-11 -0.5293883 0.9061837 -1.7165263 -1.4178250 -1.8713726 -1.563754
CISCO DD XOM GE
1 -5.8083911 0.0000000 -1.7548837 -3.8572275
2 0.3718568 4.1437190 5.2984132 -0.7518832
3 -2.3521195 5.3872990 5.0317510 1.6838564
4 5.7136191 0.1676915 -0.6596019 3.5837421
5 3.6536284 -2.2879123 -1.0215079 0.1788376
6 -3.0697677 -1.8018506 1.1868167 0.2379537
4.3.1.1 Using the \(\mathtt{describe}\) function
- The package psych comes with a function called \(\mathtt{describe}\) which generated the descriptive statistics for all the data vectors (columns) in a data frame, matrix or a vector.
library(psych) #load the required package
args(describe) #arguments for describe function
function (x, na.rm = TRUE, interp = FALSE, skew = TRUE, ranges = TRUE,
trim = 0.1, type = 3, check = TRUE, fast = NULL, quant = NULL,
IQR = FALSE, omit = FALSE, data = NULL)
NULL
# use describe to calculate descriptive stats for data_cs1.1r
= describe(data_stocks_ret[, 2:11]) #note we dont pass the date column
desc1 # check the output
head(desc1)
vars n mean sd median trimmed mad min max range skew kurtosis
DJI 1 3522 0.01 1.23 0.04 0.03 0.82 -8.20 10.51 18.71 -0.06 7.71
AXP 2 3522 0.02 2.89 0.02 0.03 1.55 -19.35 18.77 38.12 -0.01 9.14
MMM 3 3522 0.03 1.55 0.03 0.03 1.10 -9.38 10.39 19.78 0.06 4.87
ATT 4 3522 -0.01 1.80 0.03 0.01 1.22 -13.54 15.08 28.62 0.02 6.26
BA 5 3522 0.03 2.01 0.05 0.06 1.57 -19.39 14.38 33.77 -0.26 5.39
CAT 6 3522 0.04 2.14 0.04 0.05 1.65 -15.69 13.73 29.42 -0.08 4.08
se
DJI 0.02
AXP 0.05
MMM 0.03
ATT 0.03
BA 0.03
CAT 0.04
# the above output is in long format, we can transpose it get column format
= t(desc1)
desc1.t head(desc1.t)
DJI AXP MMM ATT BA
vars 1.000000e+00 2.000000e+00 3.000000e+00 4.000000e+00 5.000000e+00
n 3.522000e+03 3.522000e+03 3.522000e+03 3.522000e+03 3.522000e+03
mean 1.055257e-02 1.908563e-02 3.056011e-02 -8.647491e-03 3.499777e-02
sd 1.226702e+00 2.892586e+00 1.551706e+00 1.799180e+00 2.013123e+00
median 4.442671e-02 1.723604e-02 3.233787e-02 3.018428e-02 5.279680e-02
trimmed 2.597511e-02 3.152635e-02 3.241946e-02 9.134423e-03 5.567097e-02
CAT CISCO DD XOM GE
vars 6.000000e+00 7.000000e+00 8.000000e+00 9.000000e+00 1.000000e+01
n 3.522000e+03 3.522000e+03 3.522000e+03 3.522000e+03 3.522000e+03
mean 3.710732e-02 -2.554732e-02 -5.379787e-04 2.653014e-02 -1.696661e-02
sd 2.143040e+00 2.744068e+00 1.881993e+00 1.629181e+00 2.057353e+00
median 4.291300e-02 3.800312e-02 0.000000e+00 5.437650e-02 0.000000e+00
trimmed 4.678016e-02 -1.339579e-04 1.469270e-03 4.883990e-02 9.841473e-05
The descriptive statistics generated above gives mean, median, standard deviation, trimmed mean(trimmed), median, mad (median absolute deviation from the median), minimum (min), maximum (max), skewness (skew), kurtosis and standard error (se) .
This can easily be transferred to a CSV file or a text file. The following single line of code transfers the descriptive statistics to a CSV file which then can be imported into a word or latex file as required.
The pastecs package provides the function \(\mathtt{stat.desc}\) which generated descriptive statistics for a data frame, matrix or a timeseries. Skewness and Kurtosis are not calculated by default in \(\mathtt{stat.desc}\) but the argument \(\mathtt{norm}\) can be set to TRUE to get these measures along with their standard errors.
require(pastecs) # note library and require can both be used to include a package
# detach the package pastecs its useful to avoid any conflicts (e.g psych and
# Hmisc have 'describe' function with two different behaviours
detach("package:psych", unload = TRUE)
# use stat.desc in with default arguments
= stat.desc(data_stocks_ret[, 2:11], norm = TRUE)
desc2 #note skewness/kurtosis desc2
DJI AXP MMM ATT
nbr.val 3.522000e+03 3.522000e+03 3.522000e+03 3.522000e+03
nbr.null 2.000000e+00 2.400000e+01 3.000000e+01 5.000000e+01
nbr.na 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
min -8.200737e+00 -1.935233e+01 -9.383688e+00 -1.353821e+01
max 1.050812e+01 1.877116e+01 1.039309e+01 1.508318e+01
range 1.870886e+01 3.812349e+01 1.977678e+01 2.862139e+01
sum 3.716616e+01 6.721959e+01 1.076327e+02 -3.045646e+01
median 4.442671e-02 1.723604e-02 3.233787e-02 3.018428e-02
mean 1.055257e-02 1.908563e-02 3.056011e-02 -8.647491e-03
SE.mean 2.067018e-02 4.874068e-02 2.614656e-02 3.031656e-02
CI.mean.0.95 4.052675e-02 9.556282e-02 5.126395e-02 5.943979e-02
var 1.504798e+00 8.367052e+00 2.407790e+00 3.237048e+00
std.dev 1.226702e+00 2.892586e+00 1.551706e+00 1.799180e+00
coef.var 1.162467e+02 1.515583e+02 5.077551e+01 -2.080580e+02
skewness -5.829983e-02 -6.689750e-03 5.927112e-02 1.620418e-02
skew.2SE -7.065472e-01 -8.107441e-02 7.183185e-01 1.963817e-01
kurtosis 7.714304e+00 9.141053e+00 4.865294e+00 6.257155e+00
kurt.2SE 4.675883e+01 5.540681e+01 2.949008e+01 3.792659e+01
normtest.W 9.187712e-01 8.496717e-01 9.384591e-01 9.298653e-01
normtest.p 5.671566e-40 1.020339e-49 6.131053e-36 8.237017e-38
BA CAT CISCO DD
nbr.val 3.522000e+03 3.522000e+03 3.522000e+03 3.522000e+03
nbr.null 1.500000e+01 2.400000e+01 5.000000e+01 2.900000e+01
nbr.na 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
min -1.938931e+01 -1.568589e+01 -1.768649e+01 -1.202802e+01
max 1.437774e+01 1.373497e+01 2.182386e+01 1.085590e+01
range 3.376704e+01 2.942086e+01 3.951034e+01 2.288392e+01
sum 1.232621e+02 1.306920e+02 -8.997766e+01 -1.894761e+00
median 5.279680e-02 4.291300e-02 3.800312e-02 0.000000e+00
mean 3.499777e-02 3.710732e-02 -2.554732e-02 -5.379787e-04
SE.mean 3.392155e-02 3.611067e-02 4.623812e-02 3.171197e-02
CI.mean.0.95 6.650788e-02 7.079996e-02 9.065621e-02 6.217570e-02
var 4.052665e+00 4.592620e+00 7.529907e+00 3.541897e+00
std.dev 2.013123e+00 2.143040e+00 2.744068e+00 1.881993e+00
coef.var 5.752148e+01 5.775248e+01 -1.074112e+02 -3.498266e+03
skewness -2.605203e-01 -8.369997e-02 1.547891e-01 -1.523353e-01
skew.2SE -3.157298e+00 -1.014377e+00 1.875920e+00 -1.846181e+00
kurtosis 5.392404e+00 4.077013e+00 7.329406e+00 5.061290e+00
kurt.2SE 3.268507e+01 2.471206e+01 4.442585e+01 3.067808e+01
normtest.W 9.550329e-01 9.583075e-01 9.104004e-01 9.381393e-01
normtest.p 1.196739e-31 1.172506e-30 1.882675e-41 5.179385e-36
XOM GE
nbr.val 3.522000e+03 3.522000e+03
nbr.null 2.900000e+01 6.300000e+01
nbr.na 0.000000e+00 0.000000e+00
min -1.502710e+01 -1.368410e+01
max 1.586307e+01 1.798444e+01
range 3.089017e+01 3.166854e+01
sum 9.343915e+01 -5.975640e+01
median 5.437650e-02 0.000000e+00
mean 2.653014e-02 -1.696661e-02
SE.mean 2.745205e-02 3.466683e-02
CI.mean.0.95 5.382353e-02 6.796911e-02
var 2.654232e+00 4.232702e+00
std.dev 1.629181e+00 2.057353e+00
coef.var 6.140870e+01 -1.212589e+02
skewness 4.651513e-02 1.102593e-02
skew.2SE 5.637262e-01 1.336254e-01
kurtosis 1.043194e+01 7.781017e+00
kurt.2SE 6.323129e+01 4.716320e+01
normtest.W 9.160764e-01 9.046828e-01
normtest.p 1.839459e-40 2.126284e-42